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Abstract

Numerical simulations of 2-D triple flames under gravity force have been implemented to

identify the effects of gravity on triple flame structure and propagation properties and to understand

the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range

of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for

downward-propagating (in the same direction with the gravity vector) and upward-propagating (in

the opposite direction of the gravity vector) triple flames.

Results of numerical simulations show that gravity strongly affects the triple flame speed

through its contribution to the overall flow field. A simple analytical model for the triple flame

speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the

proposed model with the numerical results for a wide range of gravity, heat release and mixing

width conditions, yield very good agreement. The analysis shows that under neutral diffusion,

downward propagation reduces the triple flame speed, while upward propagation enhances it. For

the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing

triple flame speed.

Downward-propagating triple flames at relatively strong gravity effects have exhibited

instabilities. These instabilities are generated without any artificial forcing of the flow. Instead

disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently

amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame

configurations have been performed to identify the most amplified frequency in spatially developed

flows. The eigenfunction equations obtained from the linearized disturbance equations are solved

using the shooting method. The linear stability analysis yields reasonably good agreements with the

observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances

increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most

amplified just downstream of the premixed branches. The effects of mixing width and differential

diffusion are investigated and their roles on the flame stability are studied.



Introduction

Since the work of Phillips [1] more than three decades ago, there has been a growing interest in

the study of triple flames [2-17]. The interest is largely motivated by the potential role these

structures play in the burning of partially premixed mixtures, especially for the stabilization and

ignition in diffusion flames (e.g., [1], [9], [18]). Heat release is known to play an important role in

the enhancement of the triple flame propagation speed as demonstrated by the numerical studies of

Ruetsch et al. [11]. Analyses and computations in [15] shows that under strain and non-unity

Lewis number conditions a significant departure of the triple flame speed from the laminar planar

value may occur even in the absence of heat release. More recently, Echekki and Chen [16] and lm

and Chen [19] explored the coupling of heat release with preferential diffusion effects and

chemistry. Their studies show that to the first order, the enhancement of the triple flame speed is

primarily attributed to heat release. The contribution of preferential diffusion to the triple flame

speed especially near the leading edge (the triple point) of the triple flame is within 10% or less.

The above-mentioned studies also show that the triple flame propagation speed can be

approximated by the square root of the density ratio across the triple flame as proposed by

Ruetsch et al [11]. This simple correlation is valid for the range of moderate scalar mixing layer

thickness. The physical mechanism that contributes to the enhancement of the triple flame speed

with heat release is directly associated with the streamline divergence ahead of the premixed

branches followed by their subsequent convergence further downstream.

Because of the role played by the fluid mechanics in the enhancement of the triple flame

speed, the coupling between heat release and gravity is believed to be important. This coupling is

also believed to play a key role in the onset of instabilities in triple flames. Recently, measurements

and computations by Aggarwal et al [22] showed that burner-stabilized triple flames in two fuel-

oxidizer stream configurations are subject to buoyancy-induced instabilities at normal gravity.

They proposed that these instabilities are of the Kelvin-Helmholtz type. They also observed that

these instabilities generate large vortex structures that are initiated in the nonpremixed branch in

one configuration and in the premixed branch in the other. The corresponding flickering

frequencies, which are shown to be of the same order as the ones observed in candle flames and jet

diffusion flames, are affected by the amount of heat release as seen in the two configurations.

Heat release and buoyancy have long been recognized to play key roles in the onset and

damping of instabilities in premixed and diffusion flames. For example, these instabilities are

associated with the flickering of the candle flame [35, 36] or the instabilities in premixed bluff

body stabilized flames [37]. Various approaches have been used to identify the origins of these

instabilities. In this investigation, we attempt to elucidate the nature of the coupling between heat

release and buoyancy by computational studies of the structure, propagation and stability

characteristics of triple flames in a scalar mixing layer. First, we will consider a diffusion neutral

mixture (the Lewis numbers of both fuel and oxidizer are equal to unity) with a simple finite-rate
kinetic model. Consideration of differential diffusion effects in terms of Lewis number will be

given as well. Moreover, triple flame configurations with the gravity vector aligned with the axis of

triple flame propagation are extensively examined. A parametric study is carried out with the

magnitude and sign of the gravity vector varied over a relatively wide range of conditions. For

stability analysis, we formulate a triple flame inviscid linear stability analysis. We will attempt to



identify the mechanismsof buoyancy-inducedinstabilities and evaluate the most amplified
frequencies.

Thereportis dividedtwo majorsections.Thefirst is concernedwith thestudystructureand
propagationin steadystatetriple. Thesecondis focusedon transienttriple flamesandtheir stability
analysis.In the following sections,the governingequationsandnumericalimplementationof the
solutionof thetriple flamesarepresented.Then,discussionsof the computedeffectsof buoyancy
on triple flame structureand propagationaregiven. Resultsof a seriesof parametricruns are
presentedin thefollowing sectionto exploretherelationshipbetweenthe triple flamepropagation
speedand the buoyancy.A simple theoryof the dependenceof the triple flame speedon the
buoyancyand heat releaseis proposed.The theoreticalprediction is comparedto the computed
triple flame speedsover a wide rangeof parameters.Next the formulation and computationof
linearstabilityof triple flamesarediscussed.Finally, asummaryof thefindings is presented.

Numerical Configuration of the Triple Flame

Simulations of planar triple flames in a scalar-mixing layer are implemented using an unsteady

two-dimensional numerical scheme with high accuracy comparable those used for direct numerical

simulations for turbulent flows. The governing equations are summarized below.

Continuity: Mass conservation is expressed as follows

Op + a,ou____= 0 (1)

Ot axj

and uj and u2 correspond to the streamwise velocity and transverse velocity respectively. Here, the

streamwise coordinate will be denoted by x and the transverse coordinate by y.

Momentum: The momentum equation for the 2-D compressible flow is expressed as follows

Opui a_iuj ap + arij_- ..... p6zig , (2)
at axj ax, axj

where g is the gravity acceleration with a positive value for gravity vector pointed in the same

direction as flame propagation. We will denote these flames as downward-propagating triple flames

and those with a negative acceleration of gravity as upward-propagating triple flames. The stress

tensor, r 0 , is given by:

= J( Ou i Ous'] 2,. Ouk ]
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where tx is the viscosity with temperature dependence as
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with a =0.76. The reference state, denoted by the subscript 0, corresponds to inlet conditions where

the temperature is assumed to be uniform (in the transverse direction).

Energy: Assuming the ideal gas law, P = pRT, the equation for total energy, et, defined as

is

1 2 P
pe, = _puj +-- (5)
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at OXj OXj OXi

where y is the ratio of species heats, ce/cv, assumed to have a constant value of 1.4. QF is the heat

of reaction per unit mass of fuel burned. (J')F is the chemical reaction rate of fuel and qj is the heat

flux in the j-direction given by
OT

qj =-2--, (7)
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where _, is the thermal conductivity.

Species: The combustion process is described by the equations for the fuel and oxidizer mass

fractions, YF and Yo, as

@r_ amj_'k aY_G
+ - _-cb_ (8)

at Oxj ax,

Here, Vjk is the diffusive flux of species k in the j-direction given by

,oD k OY _
Vjk=

Y_ axj

where Dk is the mass diffusivity of the species k. The thermal conductivity and mass diffusivities

are temperature dependent and their values are determined by assuming constant values of Lewis
and Prandtl numbers as

(9)

Le s _ __A , Le o _ A , Pr- ,uCp (10)
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In this investigation, we set Pr=O. 75. The combustion process is modeled by a one-step chemical
reaction as
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wherethestoichiometriccoefficientsareunitaryfor simplicity. Thereactionratehasthe
following Arrheniusform

 xp/vi,=

Here, Ta is the activation temperature and A is the pre-exponential factor. With the non

dimensional temperature, 0, the heat release parameter, O, the Zeldovich number, _, and the

reduced pre-exponential factor, A, the above reaction rate can be expressed as

_' = APYF PYo exp(
_c(1- O) 1 (13)

2-o)j
with the following definitions

0 = (T -To)/(T = -To), tg=(T=-To)/T_, t¢ = 0T,_/T=, and A=Aexp(-t¢/O). (14)

In the above expressions, To is the inlet temperature and Too is the adiabatic flame temperature of

the stoichiometric mixture. The molecular weights of fuel and oxidizer are assumed to be equal and

the chemical reaction rates of fuel and oxidizer are equal, i.e., o_=coo= -co.

The compressible Navier-Stokes equations along with the conservation equations for

species and energy are solved in a two-dimensional domain. Spatial derivatives are approximated

by a sixth-order compact finite-difference algorithm and the equations are integrated in time using a

third-order Runge-Kutta scheme. Boundary conditions are specified using the Navier-Stokes

Characteristic Boundary Conditions (NSCBC) [41]. The flame is stabilized using a procedure

similar to the one implemented by Ruetsch et al [11]. A correction is applied to the streamwise

component, Ul, of the velocity field that corresponds to the difference between the local

displacement speed of iso-scalar surfaces near the reaction zone and along the centerline and its

corresponding fluid velocity. The inlet velocity is adjusted accordingly. The mass fraction

distributions of fuel and oxidizer are specified by using an error function profile as

(15)

where W is the characteristic mixing layer width, and y is assigned to be zero at the middle of the

computational domain such that the plane with y=O corresponds to the stoichiometric mixture. An

outflow boundary condition is specified at the outlet of the computational domain and non-

reflecting boundary conditions are imposed on all sides. The buoyancy is described by the Froude

number based on the planar premixed flame speed and a characteristic length scale. This length is

associated with distance over which dilatation occurs. For the computational conditions considered,

this distance is related to the flame thickness because of the relatively moderate mixture fraction

gradients used. However, if the mixture fraction gradient is increased, the scalar mixing layer width

may also become an important parameter.



We will explore therelevanceof two differentFroudenumbers associatedwith the scalar
mixing layerwidth at theinlet, W, and the flame thickness, Lf. Based on W, we have

Fr w = . (16)
gW

Similarly, we replace W by the thickness of a planar stoichiometric premixed flame, Lf, we have

another Froude number, Frz.f, as

(17)
Fr u, - gLi

Positive values of the Froude number (thereby of g) correspond to triple flames propagating into

the direction where gravity force is pointed (downward propagating flame) and vice versa. Table 1

lists the conditions and the range of parameters computed in this study.

The numerical simulations for steady state triple flames were carried out with a uniform

grid system of 121x241 grids (streamwise direction x transverse direction) with a physical region of

about 40x80 flame thickness. Exploration runs with twice the resolution have been conducted

showing differences within 1% in terms of deduced flame propagation speed. The steady-state

solution of the triple flame structure is obtained using a similar numerical technique described by

Ruetsch et al [11]. Steady state solutions without gravity force were obtained first and they were

used as initial conditions for subsequent runs with buoyancy effects to save time.

Structure and Propagation of Stable Triple Flames

General Observations on Stable Triple Flames

The general characteristics of a triple flame are briefly described here to provide the

necessary background for the discussions of the effects of buoyancy on triple flames. Figure 1

presents the computed contours of axial velocity and fuel consumption rate in a two-dimensional

domain. The mixture enters the domain from the left side of the boundary. As seen in the reaction

rate contour, the triple flame structure is delineated by its three branches. The two "wings'

correspond to the two lean and rich prernixed flames. The "tail' trailing the premixed branches

corresponds to the diffusion flame branch where excess fuel and oxidizer from the premixed

branches are burned. As the triple flame propagates upstream, the flow ahead of the triple flame tip

is decelerated as streamlines diverge. As the flow approaches the reaction zone, heat release causes

the flow to accelerate. Further downstream of the triple flame tip, the flow gradually decelerates as

the flow behind the flame tip continues to expand laterally. In Figure 2, detailed contours of triple

flame structures are shown in terms of temperature, reaction rate and species mass fraction.



Effects of Buoyancy on the Steady Triple Flame Structure

The above results serve as a baseline for comparison with triple flames subject to buoyancy

effects. The computed global effects of buoyancy on triple flames are illustrated in Fig. 3 with

1/Frw=l (downward-propagating flame, top row), 0 (zero gravity baseline case, middle row), and -

1 (upward-propagating flame, bottom row). Shown on the left side of the figure are iso-contours of

mixture fraction (dashed lines), Z, defined as

I + YF - Yoz - (18)

and streamlines (solid lines). The stoichiometric value for Z is 0.5 for the prescribed mixture

properties. The corresponding reaction rate iso-contours superposed on temperature iso-contours

are shown on the right hand side.

When the Froude number is positive, buoyancy enhances the flow acceleration above the

triple flame tip as density decreases. The opposite effect occurs when the gravity force is reversed

in direction. In comparison with the triple flame without gravity force, buoyancy results in a

narrower triple flame when the gravity force is pointed downward. As the gravity force is reversed

a wider span triple flame is seen. Therefore, the flame shape is affected by buoyancy and by the

direction of the gravity vector. Moreover, due to buoyancy, the changes of the downstream flow

field lead to modifications in the mixing layer ahead of the triple flame via flow field divergence

such that its propagation speed is altered.

Detailed profiles of the mixture fraction gradient, temperature, and reaction rate along the

stoichiometric line are shown in Fig. 4. Consistent with the qualitative flow pattern seen in Fig. 3

the mixture fraction gradient increases when the buoyancy accelerates the fluid above the triple

flame tip. The opposite is seen when the Froude number is negative. The computed peak reaction

rate and temperature at the triple flame tip are much less influenced by buoyancy. However, the

reaction rate along the diffusion branch is seen to increase when the triple flame becomes narrower

(cases with positive Froude numbers). This is due to increased diffusion of fuel and oxidizer as the

triple flame gets narrow.

Steady Propagation of Triple Flames

In this investigation, the triple flame propagation properties are characterized by a single

quantity, the triple flame propagation speed. This quantity measures the flame speed at the leading

edge of the triple flame relative to the uniform upstream flow. Other definitions may be adopted as

well. However, the triple flame speed is perhaps the most relevant quantity for triple flame

stabilization.



The mechanism of triple flame speed enhancement under gravity

The propagation speed of the triple flame is computed by tracking an interface

corresponding to a fixed fuel mass fraction along the centerline. The corresponding displacement

speed of this interface along the centerline in the x direction relative to the local flow may be

expressed by

Sv = _ /Ox(PDFOY F / _x) + &V (19)
PIOYFIOXl

This speed measures the component of the fuel interface displacement in the x direction, and is

valid only along the centerline. At steady state, SD corresponds to the displacement speeds of other
scalar iso-contours in the same location. To evaluate the triple flame propagation speed, the total

speed of the iso-scalar contour at the triple flame tip (gas velocity plus displacement speed in the x

direction), is subtracted from the cold flow velocity far upstream of the triple flame as

Sp : -[(Ul - So) - u0] = (So - ul) + u0 (20)

Here, ul is the flow velocity in the streamwise direction where SD is evaluated, and uo is the

unburned gas velocity in the streamwise direction evaluated at the inlet. As noted earlier, the value

of uo is continually adjusted to stabilize the leading edge of the flame in one location. Therefore,

the branches of the triple flame are allowed to evolve through their propagation properties and the
flow field until the flame structure reaches its steady state. When the flow field reaches steady state,

the inlet velocity, uo, corresponds exactly to the triple flame speed. However, steady state of the

triple flame structure is reached much earlier; and the above relation is valid much earlier than the

simple relation of Sp = uo. Maintaining the correction, SD - ul, in the above equation also reveals the

fundamental mechanism of the enhancement of the triple flame propagation speed. Since ul is

positive in the present study, a reduction in ul leads to an increase in the triple flame speed. The

magnitude of ul is influenced by both flow divergence and buoyancy effects. Previous analytical

and numerical studies of triple flame propagation (e.g., [6,11]) showed that the propagation speed

decreases with increasing mixture fraction gradient due to the effects of flame curvature, but

increases with heat release due to the divergence effects of the flow field.

Detailed profiles of the various contributions to the triple flame speed along the centerline

are shown in Fig. 5 for Frw= -1, 0 and 1. As expected, buoyancy has a large effect on the flow field

downstream of the triple flame tip, as it enhances flow acceleration in downward-propagating

flames and reduces it for upward-propagating flames. However, the displacement speed is found to

be less sensitive to buoyancy. As the definition of SD indicates, the value of the displacement speed

is governed by the balance of reaction and diffusion and the laminar flame thickness. Therefore, it

is closely associated with molecular transport and chemistry in the reaction zone, quantities that are

only marginally affected by buoyancy as suggested by results presented in the previous section.

Therefore, changes in the value of Sp may be attributed primarily to hydrodynamic effects

associated with flow acceleration by dilatation. Profiles of the triple flame propagation speed show

that Sp is uniform over a relatively wide region around the peak of displacement speed. This is also

the region where heat release occurs, providing a unambiguous location where the pertinent triple

flame propagation quantities are evaluated. Consequently, we simply take the maximum



propagationspeedevaluatedalongthestoichiometricline astherepresentativepropagatingspeed.
Thepropagationspeedis reducedwhentheFroudenumberis positive.

Relation between Propagation Speed and Buoyancy

A series of simulations have been conducted to explore the relation between the triple

flame propagation speed and the two different Froude numbers defined in Eqs. (16) and (17). A

simplified analysis of the buoyancy effect on Sp is described in Appendix A and the result suggests

the following relation in the limit of small gravity force

I 1112

Sp po. 1
- l-C o = l_/i-_-X,

Sp,g=o Po Fr_
(21)

where Co is a constant to be determined and X -C O(p=/P0)(1/FrL: ). Although this correlation is

limited to small values of the parameter, X, its predictions of the general trends of the triple flame

propagation speed may extend beyond its underlying assumptions. First, the relation predicts the

behavior of the flame at the limiting conditions of zero gravity by yielding a value on the left-hand

side of unity. The expression also shows that the triple flame speed is enhanced by gravity in

upward-propagating flames (gravity and propagation vectors are pointed in opposite directions)

and reduced in downward-propagating flames (gravity and propagation vectors are aligned).

Changes to the flame propagation speed is largely due to changes in the gas velocity in the

expansion region as suggested already in Fig. 5. As in the original analysis of Ruetsch [i 1], lateral

flow expansion is the primary mechanism for triple flame speed enhancement, and through which

heat release (expressed here in terms of the density ration, p=/p0) appears in the expression for

the triple flame speed. Buoyancy, then, acts to modulate this expansion by fluid acceleration or

deceleration through the flame.

Finally, Eq. (21) suggests the existence of a critical Froude number for downward

propagating flames for which the triple flame propagation speed approaches zero:

1 P0 $2
Fr_,critical = C 0 P_ , or gcritical -- (22)

t90 C O p= L/

The validity of the analysis may not hold at this limiting condition. However, such a critical value

if it exists, may have consequences to a variety of applications where triple flames play a role. For

example, the stabilization of lifted jet diffusion flames may be significantly hampered under

vanishing propagation speeds near this critical value of the Froude number. Conditions where the

triple flame speed approaches zero or even becomes negative have been predicted by the analysis

of Dold et al [4] and later by Daou and Linan [15] under strong straining conditions. Additional

observations of negative triple flame speeds (not shown here) have also been noted by the authors
associated with the Kelvin-Helmholtz instabilities.



Resultsof the analysisare comparedto the simulationssummarizedin Table 1. As the
densityratio appearsin Eq. (21),caseD listed in Table 1 is conductedwith ,o/Do being half of

that in other cases in order to test the density ratio dependence. In addition, Cases E and F are

conducted with different laminar flame speeds so that different sets of FrLf can be used for

assessing the validity of Eq. (21). Figure 6 presents a comparison of computed triple flame

propagation speeds and the simplified model with Co=lO. The agreement is good except for large

values of X where the assumption of small gravity force is not valid. Also indicated in the figure are

the estimated ranges for stoichiometric methane-air combustion and those with a fuel mixture of

77% N2 and 23% H2 by volume. The latter has the same laminar flame speed as methane-air

premixed flame but with a thickness about four times larger. These estimates are seen to fall into

the regions where Eq. (21) is accurate. Consequently, Eq. (21) may be used as a semi-empirical

correlation for estimating the effect of buoyancy on triple flames with practical fuels at gravity

conditions ranging from 0 to earth gravity.

Effect of Gravity Orientation

Several runs were performed to explore the effects of the orientation of gravity with

respective to the axial flow direction. Figure 7 shows a comparison of reaction rate contours for

different gravity vectors. The magnitude of gravity is fixed but its orientation is varied every 45 o.

The shapes of triple flames are seen to distort from the symmetric profiles when the gravity vector
is inline with the x-direction.

Effect of Differential Diffusion

The effect of differential diffusion between fuel and oxidizer is studied by assigning fuel

Lewis number different from 1 while keeping the oxidizer Lewis number to 1. Figure 8 presents

contour plots of reaction rates from results using different fuel Lewis numbers. In comparison with

the case of neutral diffusion, the diffusion branch shifts either to the fuel (left side) or to the

oxidizer side (right side) when the fuel Lewis number is smaller than or larger than 1. This behavior
can be understood as fuel diffuses faster than oxidizer when LeF< 1 and the stoichiometric reaction

zone will then shift to the fuel side. Also revealed in the comparison is the burning intensity at the

flame tip. When LeF< 1, the flame burns more rigorously leading to higher flame propagation speed.

The opposite is true when LeF>I. In Figure 9, the computed propagation speed is plotted versus

LeF showing an increase trend with decreasing fuel Lewis number. Also compared in the plot are

the corresponding results under constant density condition that gives a much stronger Lewis

number dependence. The effect of density change caused by combustion increases the distance

among the three branches and therefore reducing the gradient of mixture fraction. Differential

diffusion effect becomes less when the gradient is reduced.
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Triple Flame Stability

General Observations on Unstable Triple Flames

The numerical simulations for unsteady state triple flames were carried out with a uniform

grid system of 36 lx481 grids (streamwise direction x transverse direction) with a physical region of

about 120x160 flame thickness. Due the large domain, the computation time is 6 times of that for

steady state flames. Table 2 lists the limited conditions explored in this investigation. Figure 10

shows snapshots of reaction rate contours superposed on vorticity contours for unstable triple

flames at equal time intervals for Case I. The figure shows two extended vortices of opposite signs

that straddle the diffusion branch of the triple flame and originate just downstream of the premixed

branches. The time sequence shows that the shape of the diffusion branches, as well as the angle

made by the premixed branches with the axial direction, changes and follows closely the vortex

pair. The same temporal sequences show a clear coupling between the baroclinic vorticity

generated just downstream of the premixed branches and the dynamics of the triple flame. Similar

observations are made by Agarwal et al [22], suggesting that the vorticity field and its effects on the

mean velocity field are closely associated with triple flame instabilities.

Figure 11 presents a time series of temperature evolution at several centerline locations

downstream of the triple flame tip for Case I. The onset of unsteady modes is clearly seen and the

similarity of the temporal development of temperature is noted at different locations. The

computed magnitude of oscillation is seen to increase with downstream distance indicative of an

unstable mode being amplified as it travels downstream. A fast Fourier analysis has been

performed on the centerline temperature time series at each downstream location. The resulting

power density spectrum (not shown) contains high level of noise due to the small samples of data.

There are no identifiable features from the power density plots. Figure 12 presents various

features of a unstable triple flame during the unsteady development. In the top left figure, the

difference between the axial components of triple flame propagation speed and the fluid speed at

the triple flame tip is plotted versus time. For steady-state stable triple flames, the difference would

be zero as denoted by the horizontal line. As time progresses, the difference is negative most of

time and it occasionally is positive. The magnitude increases with time leading to a unstable triple

flame. In the simulation, the triple flame moves toward downstream and it eventually goes out of

the computational domain. The angel between the triple flame propagation direction and the axial

axis is shown in the upper fight figure. The unstable mode is seen initially close to a sinusoidal

profile and it later becomes distorted as nonlinear effects become important. The magnitude also

increases with time but is limited to about 90 degrees. The relationship between the difference and

the angel is examined in the lower left plot. The axial component of triple flame propagation speed

is Upl = ]Up]cos(a), where a denotes the angel. When triple flame's propagation direction deviates

from the axial direction, the axial component becomes small due to the tilting of flame leading to a

large difference. The magnitudes of triple flame propagation speed and the fluid speed at the local

triple flame tip are plotted versus time in the lower fight figure. It is clear that the local fluid speed

is greater than the triple flame propagation speed most of time. Consequently, a stable flame cannot

be sustained. We have investigated the possible development of a stable triple flame from a

unstable mode. This simulation is performed by restarting a unstable run with the buoyancy

11



removed suddenly. Figure 13 presents the same results as in Figure 12 showing the reverse trends.

A stable triple flame is recovered eventually from an initially unstable condition.

Linear Stability Analysis

In many respects, the analysis of triple flame stability may be implemented in the same

fashion as previous analyses [21, 31]. Kimura [36] constructed a stability theory for axisymmetric

parallel flows and showed that the oscillation of laminar-jet flames can be explained by linear

stability analysis. Trouve and Candel [29] performed a linear stability analysis of the inlet jet in a

ramjet dump combustor using hyperbolic-tangent velocity and temperature profiles. They found

that the density variation has a significant effect in the instability. Jackson and Grosch [30] studied

the effect of heat release in the spatial stability of a supersonic reacting mixing layer using the

hyperbolic-tangent velocity profile and the flame sheet approximation. Mahalingam et al [31],
studied the effects of heat release on the stability of coflowing, chemically reacting jets. They

suggested that the heat release due to chemical reaction stabilizes the flow. Buckmaster and Peters

[35] performed an inviscid linear instability analysis for a candle flame. The results are comparable

with experimental results.

An inviscid linear stability analysis is implemented on the steady-state triple flame solutions

obtained using the formulation of the previous sections. Although the buoyancy term has been

included in the above formulation, it is neglected in the linear stability formulation below. Both

viscous and buoyancy terms have been shown to be of the same order [35], and thereby the

buoyancy term is neglected in the inviscid stability formulation. We also assume that the flow is

parallel with its predominant flow direction in the x-axis. The parallel flow assumption implies that

the predominant variation of the mean flow properties is in the spanwise direction. The flow

variables,/9, u, v, p, and temperature, T, are assumed to be the sum of the mean and a disturbance of

the form

f(x, y,t) = f(y) + f'(x, y,t), (23)

where f(x,y,t) is a generic flow variable that is a function of position and time. The over-bars and

primes denote the mean and disturbance components, respectively. Because the parallel flow

assumption is invoked, f is assumed to be a function of y alone.

The disturbance terms are described as traveling waves

f'(x, y,t) = )7(y) exp[i(o:x - fit)l, (24)

where the quantity j7 is the eigenfunction assumed to be a function of y only; o_ is the complex

streamwise wave number; [3 is the given temporal frequency; and i is defined by i - _-2-i. For the

temporal stability analysis, c_ is real and 13is complex, whereas for the spatial stability analysis, c_ is

complex and 13 is real. The amplification rates for the two cases are 13i and -c_, respectively. A

detailed formulation of the stability analysis is provided in Appendix B. The analysis yields a

second order ordinary differential equation for a transformation, _, of the pressure eigenfunction,

12



(seeAppendixB). The pressureeigenfunctionequationis solvedusingthe shootingmethodfor
real 13values and complex at values (the spatial stability analysis).Mean profiles of the
temperature,densityandvelocity from numericalsimulationsof stableflamesare fitted and used
for themeantermsin thedisturbancesequations.

Figure 14 showsa typical result from the linearinstabilityanalysisbasedon steadystate
triple flames.The frequency, fl, normalized by the width of mixing at the incoming flow and

laminar flame speed, as a function of the negative imaginary part of the wave number, -cti at a

distance 31/3/3 mixing widths, W, downstream of the inlet and at two different Froude numbers

(based on mixing width) and zero gravity. The figure show that as gravity effect increases (with

Froude decreasing), the frequency at the most amplified mode increases in magnitude and shifts to

higher wave numbers. Therefore, increasing gravity effect leads to less stable flames; this is

consistent with numerical simulations of triple flames. The location of most amplified frequency

at 31/3/3Wis found around 0.073 for Frw=2, which is within less than 15% of the observed value in

the numerical simulations of 0.083. For a given condition, the magnitude of the most amplified

frequency is found to decreases with downstream distance. Therefore, the observed value from

numerical simulations is more representative of conditions just downstream of the premixed

branches. This further enforces the observation that instabilities are initiated just downstream of the

premixed branches.

The effect of mixing width on the stability is examined in Figure 15 in terms of the

frequency at the most-amplified mode from the linear stability analysis. The frequency is seen to

increase with buoyancy effect but decrease with the mixing width. This appears consistent with the

expectation that a thicker flame (with a larger mixing width) has a slower motion if the flame

becomes unstable. Case N and Case O were performed to reveal the dependence of stability on the

mixing width. When the mixing width is increased by 50% in Case O in comparison with Case I,

the flame becomes stable consistent with the findings from the linear stability analysis. In Case O,

we increase the effect of gravity by a factor of two while keeping other parameters as same as those

in Case N, the triple flame becomes unstable. We have explored the effect of differential diffusion

effects on the stability with limited runs for LeF=O. 4 and LeF=2.0 (Case J and Case K) under the

same gravity effect as the case of LeF=l.0 (Case I). Under the neutral diffusion, the triple flame
becomes unstable. The flame with the smaller fuel Lewis number is stable while that with the

higher Lewis number is unstable. A further run for Lez=2 with half of the gravity effect was also

performed (Case L) and the results lead to a unstable triple flame. These limited runs suggest that

the stability of triple flames is sensitive to the differential diffusion effects. As revealed in Fig. 9,

the triple flame propagation increases with decreasing fuel Lewis number and this seems to

correlate with the stability of the flame.

Conclusions

The influence of buoyancy on the propagation and structure of triple flames in a two-

dimensional scalar mixing layer is studied numerically with a wide range of parameters, including

the mixing width, the amount of heat release, and the magnitude of gravity force. The numerical

13



results revealed that buoyancy affects the triple flame topology, its propagation speed, and to a

lesser extent its structure. When the gravity force is pointed in the direction of the triple flame

(downward-propagating), buoyancy causes further acceleration of fluids downstream of the triple

flame tip. In comparison to triple flames without buoyancy effects, the two premixed flame

branches are brought closer to the diffusion branch leading to a less divergent flow pattern ahead of

the triple flame. In response to the changes in fluid flow, the triple flame propagation speed

decreases and the fuel consumption rate of the diffusion branch increases. The opposite trend is

found for upward-propagating triple flames, where gravity force is pointed in the direction opposite

to that of propagation. A simplified analytical model for the buoyancy effect on triple flame

propagation speed is proposed for the limiting case of small gravity force. The analytical model is

found in reasonably good agreement with the numerical results over a wide range of conditions

including gravity, heat release, and mixing width. The analysis also suggests that for downward-

propagating flames with a relatively large Froude number, the triple flame propagation speed

approaches zero. This trend, which seems to occur beyond the limitation of the simplified model,

shows encouraging comparisons with the numerical results. The existence of a zero-speed triple

flame under buoyancy conditions may have important consequences on the stabilization

mechanisms of diffusion flames. For constant density flows, differential diffusion effects are found

to significantly affect the propagation speed. This finding is consistent with previous studies;

however, heat release causes these effects to decrease due to fluid expansion.

The simulations show that downward-propagating (positive Froude numbers) flames exhibit

instabilities at relatively strong gravity conditions. An inviscid linear stability analysis is

implemented on the steady profiles of the velocity, temperature and density profiles. The analysis

shows that the most amplified frequency increases with the value of the gravity force but decreases

with the mixing width. The predicted most amplified frequencies from stability analysis is within a

reasonable range of the instabilities frequencies observed in the two-dimensional simulations of the

triple flames. The magnitude of this frequency is lower with downstream distance of the premixed

branches further suggesting that the origin of these instabilities may be associated with the

baroclinic vorticity generated by the premixed branches. Numerical exploration runs indicated that

the stability of triple flames is sensitive to the fuel Lewis number. Triple flames with low fuel

Lewis number are found more stable under the same conditions at which the triple flame is unstable

with Le_ -=1.
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Appendix A: Simplified Analysis of Buoyancy Effects on Triple Flames

In the following analysis, we derive an expression for the leading-order dependence of the

triple flame speed on buoyancy. The analysis follows closely the derivation and assumptions

adopted by Ruetsch et al [11]. The results are derived in the limit of small Froude numbers or small

gravity force relative to flow inertia due to heat release. Figure 16 shows a schematic of a triple

flame subject to a gravity force pointed downward with stations I-4, denoting different locations

along the central streamline corresponding to far upstream (1) and downstream (4) of the reaction

zone and points across the reaction zone (stations 2 and 3). Here, we assumed that (1) the flow at

stations 1 and 4 is uniform in the lateral direction, and that (2) the dominant mechanisms for

velocity changes are governed by lateral flow divergence/convergence for the portions of

streamline between 1 and 2 and between 3 and 4, and by flow dilatation or heat release across

stations 2 and 3. We have used g to represent the magnitude of the gravity vector, and its value may

be positive (downward-propagating flame) or negative (upward-propagating flame). Here, we are

concerned primarily with the velocity component in the streamwise direction, ul. The notation is

further simplified by dropping the subscript, 1, associated with the streamwise direction. Instead the

subscripts used in the analysis refer to the downstream locations along the centerline.

Using the Rankine-Hugoniot relation across the points 2 and 3, we have

,o2u z = ,o3u 3 (25)
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P2 + P2u_ = P3 + P3u_ • (26)

Here, p, u and p correspond to the static pressure, flow velocity along the stoichiometric streamline

and the gas density, respectively. Note that for the stabilized (in laboratory coordinates) triple

flame, the triple flame propagation speed, Sp is equal to u 1. If the flame structure is not altered by

the geometry of the triple flame, its consumption speed evaluated at the triple point is equal to the

planar laminar flame speed, &, and the velocity at station 2, u2. Also, consistently with the notation

adopted in the text, the densities Pl and 94 correspond to the upstream and downstream densities, 90

and P=, respectively. Along the streamline at the center, Bernoulli's equation gives the following

results for segments from point 1 to point 2 and from point 3 to point 4

1 _ 1 2

P_ +-_Plu( + plgxl = P2 +-_ P2U2 + P2gx2 (27)

1 2 1 2

P3 + _,°3u3 + p3gx3 = P4 + _,°4u4 + ,04gx4 (28)

Let's denote L1=x2-xl and L2=x4-x3, and assume that p1=,02, ,o3=,o.4, and plui_l=pglg4_4. With these

assumptions, we can combine Eqs. (25)-(28) leading to the following result

P_ 1

ul = (29)

k,u2J pl-P4-(PiLa+P4L2)g to,(all 2

1 2 _._]) +1
P4

The difference between the background hydrostatic pressures without combustion at point 4 and

point 1 is p,._ -P,.4 = p_(l_ + L2)g. Expressing the pressure as P=Ps+P', we can rewrite Eq. (29)

as

Pl 1

P4

P'I -P'4 +(Pl - P4) L2 g
+1

(30)

Ruetsch, et al [11] assumed p'l=p'4 and l..tl._lg4 for triple flames without buoyancy effects. In the

limit of small gravity force, these assumptions are applicable and the following result emerges

Solving for Ul/bl2, we obtain

2 P.___a__-1

\u2 2 (P' - P4)2L2g '°4 +1 P4 2_g (u_ _

p,u? p, ku?)
+1

U 1 = ]1 P4 2Lzg

p_ u_

(31)

(32)
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For triple flames without gravity force (g=0), Eq. (32) reduces to u 1

triple flame speed,

S p._--o= J PoS L t9

= _/-_/p, u z or in terms of the

(33)

This relation is identical to that from the analysis by Ruetsch, et al [11] that provides an estimate of

the effect of flow divergence on propagation speed. A simple relation repressing the ratio of the

triple flame speed to the corresponding value at zero gravity may also be obtained

Sp -/1 to= 2L2g

Sp(g=O) _ Po S[
(34)

In this relation, the right-hand are input parameters with the exception of the length scale,

L2. This quantity may be interpreted as a characteristic distance over which dilatation occurs,

which, in turn, may be related to the flame thickness, LU. However, a number of valid definitions of

the flame thickness may be adopted based on unburned conditions as well as the profiles of the

temperature or the reaction progress variable. In the following analysis, we assume that Ls and L2

are related through a constant, Co such that, L2 = Co Li2. This constant may be evaluated from

calibration of numerical and experimental results, and may be related to the mixture's thermo-

diffusive properties. The second factor, 0.5, is used to absorb the additional factor, 2, in Eq. (34).

By substitution of this relation into Eq. (34), we obtain the following expression of the triple flame

speed enhancement due to buoyancy as a function of laminar flame parameters and the gravity

constant

Sp =ii_Cff (_L Lfg __l_C0P= 1
Sp(g =0) /9o W S_ t9o FrL I

(35)

Appendix B: Inviscid Linear Stability Formulation and Numerical
Solution

By substitution of the split terms in to the governing equations (without buoyancy or

viscous terms), and linearization, we obtain the following governing equations for the

eigenfunctions:
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i_( aU - fl) + Vp'+ p(V'+_ ia) = O,

-iflf_ + f_U'+pUia_ = -ic_,

-iflp + puiav

i(o_U - fl)pT + pT'V = O,

pT +r_=o,

(36)

(37)

(38)

(39)

(40)

where the prime, ', now denotes a derivative, d/dy, in the spanwise direction, y. The quantities U, 9,

and T represent the non-dimensional mean streamwise velocity, density, and temperature,

respectively. The quantities /3, if,F, fi, and T, denote the non-dimensional density, x and y

velocity components, pressure, and temperature eigenfunctions, respectively. Note that all of the

quantities, including y, are dimensionless. The quantities c_ and 13are the complex streamwise wave

number and the temporal frequency, respectively.

An eigenfunction for the pressure may be obtained by combining the continuity and

momentum eigenfunction equations

fi" 2aU--_-' ,_'+_(a'U -b) 2-o_'fi = O. (41)
au - p

Elimination of the density term in the above equation may be done using the energy and ideal gas

state equations, to yield

2a'U' '-a'2 _ 0 (42)
au - p

Boundary conditions for _ at y=+_ may be obtained by inspecting the governing equations at the

limits of the governing equation y=+o_

_"-a'2,_ = 0, (43)

which admits a solution of the form

= Cle _ + C2e -_ = Cle (<+i'_')y + Cze -lar+i_')y (44)

C1 and C2 are arbitrary complex constants and without loss of generality, c__0. The pressure

eigenfunction as y approaches +_ may be expressed as follows

y + +oo : _ = C2e -I<+ia,Oy ' (45)

y --_ -oo :_ = Cle I'_r+i'_,_y' (46)

because the solution of the pressure eigenfunction is bounded when y._--_+oo. The second order

pressure eigenfunction equation may be simplified to a first order equation for a related

eigenfunction, $h°hi$, obtained using a Ricatti transformation (e.g. Michalke [25]):

fi(y) = Ce _ *_)d.. (47)
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Again, C is an arbitrary complex constant. This transformation yields a complex constant, C, for

the value of fi at y=0. Therefore, the solution for fi is determined within a constant. Thus, from

the transformation, Eq. (47), we have

_,(y) _ Ce_'t'i')d'_ = fi_, fi,,(y) = (fi_),= (_,+_2)fi. (48)

Substituting Eq. (48) into the pressure eigenfunction equation and deleting the common factor fi,

we obtain the dp eigenfunction equation:

qb'+_2 _._U-fl _-0'2 =0 (49)

Since both the ¢_ eigenfunction and streamwise wave number ot are complex whereas the temporal

frequency 13is real for spatially developing flows, we can split • into the real and imaginary parts,

respectively:

: (I) r + i_i, O_ = _r "1" i_i" (50)

To obtain the governing equations for _ and _i, we substitute Eq. (50) into Eq. (49) and split the

eigenfunction equation into the real and imaginary parts as

Real part:

, 2 2 _ 15(2_r+dOr--dO i +A_r-B_ i _ +O_2 =0, (51)

Imaginary part:

where

qb' i +2(I)r(I) i + A_ i + B_ - 2o"r a'i = 0, (52)

Z' 2 'v [c r(a u- r) +e u]
A(y) = --

T (c ,U - 8) 2+ (a,U) 2

B(y) = 2U' ot_fl
(arU - fl)2 + (a U)2 ,

(53)

(54)

and U(y) and T(y) represent the dimensionless mean streamwise velocity and temperature,

respectively.

The boundary conditions for the (I)r and (I)i eigenfunctions can be derived from the boundary

conditions for the pressure eigenfunctions, Eqs. (51) and (52), and the transformation, Eq. (47). We

have fi'= _, that is,

P'/lP = _ = (_r + icb, (55)

The boundary conditions at y=+_ for q:, may be obtained using the simple expressions for ,_ at

those limits, to yield:

Y --->+_:_, = --_r, _I)i : --_i' (56)
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y---)--oo : _r = O:r, _i = Cri (57)

Finally, the governing equations in the infinity physical domain, y, may be further simplified using

a transformed finite domain coordinate system, _ : [-1,1], by using the transformation:

_= tanh(s.y), (58)

where s is a stretching constant and

tanh(x) - sinh(x) ex -e-"-- (59)
cosh(x) e x + e -x

Thus, we have

1 lnl+_
Y = 2---s- 1-_'

d_: _ s sec2(sy) = s(1-_:2),
dy

dO(y) _ dc/)(4) x d______O'(Y) -
dy d4 dy

(59)

(60)

=s(1-_a)0, (61)

where _ is defined by dcYd_ and ¢_ is any generic quantity, for example, _r, _i, U, T, etc.

By substituting these transformations into the governing equations for q_r and, qsi (51)

and (52), we obtain the corresponding governing equations in the transformed finite domain _: [-

1,1]:

2 2

F(_:) = s(1 - _:2)¢b (_:) + (b_ (4) - cp_ (4) + A(_:)¢r (_) - B(4)dP; (4) - iQ_'r + Ofi _-- 0, (62)

G(4) = s(1 - _2)cb_ (_) + 2(I) r (4)_i (4) + A(4)qb, (4) + B(4)Or (4) - 2oc_ IQ' i = 0, (63)

where

A(_) = s(1 - 42)7_(_x) 2s(1-_:2)0(_)[a'_(c_U(_:) -/3) + 6_2U(4)]
T(_) (aru fl) + (a,u (4))

(64)

and

B(_:) - 2s(1 - _:2)U (4)a'_fl (65)
(arU(_) _/3)2 + (ot_U(_:))2

From the boundary conditions for the _,.(y) and cPi (y) eigenfunctions, the corresponding

boundary conditions for the q5,4_) and cl)i(_x) eigenfunctions on the computational domain _. [ -1 ,

1 ] are obtained:
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x = 1 • ¢I:', = -a',, cPi = -G i , (66)

=-1"¢ r =G,, _i =°_i, (67)

where (zr>__0.

Eigenfunction equations, Eqs. (51) and (52), with the corresponding boundary conditions,

Eqs. (66) and (67), can be solved numerically by the shooting method for initial value problems

[39]. Mean profiles of temperature, velocity and density are specified using fitted profiles of these

quantities from the steady simulations. For the spatially developing flows, we specify the value of

13(real) and an initial guessed value of o_ (complex) and integrate the above two equations from _=

-1 to 0 and from _ = 1 to 0. The solutions are matched at _ = 0 by adjusting the value of o_ leading

to different boundary conditions for • at _ = 1 and _= -1. The change of • is determined by the

Newton iteration method. Convergent solutions of q_r and _i eigenfunctions are obtained when the

change of c_ becomes very small. The shooting method is reasonably fast and each run only takes a
few minutes on a Pentium 500 MHz machine.

After obtaining the solutions of q_r and q_ eigenfunctions, we may recover the pressure

eigenfunction by using the transformation (47):

_(y) - C3e £'*(rl)a" + C4, (68)

where C3 and C4 are constants. The integration was carried out in the computational domain from

{= 1 to a certain point corresponding to y. Since the stability equation for the pressure eigenfunction

is linear, any C3 and C4 may satisfy the governing equation. We set the values of C3 and Ca to 1 and

0, respectively.
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Table 1 Simulation Conditions*

Case _ W/Lf

A 0.85 2

B 0.85 4

C 0.85 8

D 0.70 4

E 0.85 3.2

F 0.85 4.8

&/&(A)
1

1 6.67

1 6.67

po/p_
6.67

1 3.34

08 6.67

1.2 6.67

1/FrLf

(-1.0--,0.5)
-0.5--'0.5

-1.0--'0.625)

(-1.0-+0.5)

(-0.938---+0.547)

(-0.417-+0.365)

*Under all conditions, the Zel'dovich number is 8. _) is the heat release parameter that corresponds to the

ratio between the flame temperature to the difference between the flame temperature (denoted with

subscripts m) and unburnt gas temperature (denoted with subscripts 0) at stoichiometric conditions. W is the

scalar mixing layer width. All flame speeds shown are normalized with the value in case A. (a-*b)

corresponds to a range of values between a and b.

Table 2 Simulation Conditions for unsteady triple flames

Case

G

H

I

J

K

L

M

N

O

FrLf
4

3

2.67

2.67

2.67

5.32

4

4

2

FEw W/Lf
1.33

ZeF Flame Mode

Stable3 1

2.25 1.33 1 Unstable

2 1.33 1 Unstable

2 1.33 0.4 Stable

1.33 2.0 Unstable2

4 1.33 2.0

3 1.33 1.5

Unstable

Unstable

2 2 1 Stable

1 2 1 Unstable
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Normalized Streamwise Velocity

Normalized Fuel Consumption Rate

0.4
0.3

0.2

0.1
0

-0.1

Fig. 1 Characteristics of triple flames obtained with a two dimensional simulation with

inlet flow coming from the left and leaving to the right. A mixing layer of fuel and

oxidizer is imposed on the inlet. Lengths are units of premixed flame thickness. Top:

streamwise velocity normalized by premixed stoichiometric flame speed. Bottom: fuel

consumption rate.



Temperature Reaction Rate

Temperature- Reaction Rate Reactant Mass Fraction

Fig. 2 Contour plots of triple flame structures. The triple flame tip has highest burning

rate clearly marked by the two premixed branches and the trailing diffusion branch. Flow

divergence is seen by the arrows representing the velocity vectors.
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Fig. 4 Effects of buoyancy on triple flame structures along the stoichiometric line (y=0,

Z=0.5). Simulations with gravity forces pointed downward (Frw = 1) and upward (Frw =

-1). Reference case without gravity force (Frw = 0). Top: normalized mixture fraction

gradient in the transverse flow direction; middle: normalized temperature; bottom:

normalized fuel consumption rate.
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Fig. 6 Computed correlation between triple flame propagation speed normalized by its

value at zero gravity and the Froude number based on the flame thickness of planar

premixed stoichiometric flame. The triple flame propagates downward and the gravity

forces are either pointed upward or downward. Details of conditions are listed in Table

1. The relations are seen to collapse onto one curve closely represented by Eq. (21).
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of differential diffusion. An increase in triple propagation speed is seen as the fuel Lewis

number decreases. Vf represents the flame propagation speed, and Vst is the planar flame
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Fig. i0 Snapshots of reaction rate contours superposed on the vorticity
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Fig. 11 Centerline temperature development of a triple flame undergoing unsteady

evolution subject to buoyancy effect. Temperature profiles at different locations

downstream of triple flame tip show similarity and the magnitude of oscillations are

amplified downstream.
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Fig. 12 Features of a unstable triple flame under unsteady development with a strong

buoyancy effects. The axial component of triple flame propagation speed is found to be

less than axial fluid velocity at the triple flame tip. A stable triple flame cannot be

sustained due to the difference in the triple flame propagation speed and local fluid

velocity.
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Fig. 13 Features of a unsteady triple flame under stable development by removing buoyancy effects. The
axial component of triple flame propagation speed is found to be greater than axial fluid velocity at the
triple flame tip. A stable triple flame is developed as the difference in the triple flame propagation speed
and local fluid velocity becomes negligibly small.
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Linear Instability Analysis: Steady State Triple Flames
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Fig. 16 Schematic of a triple flame subject to gravity force pointed downward in the same direction as the
triple flame propagation. Heavy dashed lines: streamlines enclosing the triple flame; thick solid lines: triple
flames anchored at point 2 with segment 3-4 denoting the trailing diffusion flame branch and the arc
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